skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huai, Yuqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 23, 2026
  2. As autonomous driving systems (ADSes) become increasingly complex and integral to daily life, the importance of understanding the nature and mitigation of software bugs in these systems has grown correspondingly. Addressing the challenges of software maintenance in autonomous driving systems (e.g., handling real-time system decisions and ensuring safety-critical reliability) is crucial due to the unique combination of real-time decision-making requirements and the high stakes of operational failures in ADSes. The potential of automated tools in this domain is promising, yet there remains a gap in our comprehension of the challenges faced and the strategies employed during manual debugging and repair of such systems. In this paper, we present an empirical study that investigates bug-fix patterns in ADSes, with the aim of improving reliability and safety. We have analyzed the commit histories and bug reports of two major autonomous driving projects, Apollo and Autoware, from 1,331 bug fixes with the study of bug symptoms, root causes, and bug-fix patterns. Our study reveals several dominant bug-fix patterns, including those related to path planning, data flow, and configuration management. Additionally, we find that the frequency distribution of bug-fix patterns varies significantly depending on their nature and types and that certain categories of bugs are recurrent and more challenging to exterminate. Based on our findings, we propose a hierarchy of ADS bugs and two taxonomies of 15 syntactic bug-fix patterns and 27 semantic bug-fix patterns that offer guidance for bug identification and resolution. We also contribute a benchmark of 1,331 ADS bug-fix instances. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  3. The optimization of a system’s configuration options is crucial for determining its performance and functionality, particularly in the case of autonomous driving software (ADS) systems because they possess a multitude of such options. Research efforts in the domain of ADS have prioritized the development of automated testing methods to enhance the safety and security of self-driving cars. Presently, search-based approaches are utilized to test ADS systems in a virtual environment, thereby simulating real-world scenarios. However, such approaches rely on optimizing the waypoints of ego cars and obstacles to generate diverse scenarios that trigger violations, and no prior techniques focus on optimizing the ADS from the perspective of configuration. To address this challenge, we present a framework called ConfVE, which is the first automated configuration testing framework for ADSes. ConfVE’s design focuses on the emergence of violations through rerunning scenarios generated by different ADS testing approaches under different configurations, leveraging 9 test oracles to enable previous ADS testing approaches to find more types of violations without modifying their designs or implementations and employing a novel technique to identify bug-revealing violations and eliminate duplicate violations. Our evaluation results demonstrate that ConfVE can discover 1,818 unique violations and reduce 74.19% of duplicate violations. 
    more » « less
  4. Vehicles controlled by autonomous driving software (ADS) are expected to bring many social and economic benefits, but at the current stage not being broadly used due to concerns with regard to their safety. Virtual tests, where autonomous vehicles are tested in software simulation, are common practices because they are more efficient and safer compared to field operational tests. Specifically, search-based approaches are used to find particularly critical situations. These approaches provide an opportunity to automatically generate tests; however, systematically producing bug-revealing tests for ADS remains a major challenge. To address this challenge, we introduce DoppelTest, a test generation approach for ADSes that utilizes a genetic algorithm to discover bug-revealing violations by generating scenarios with multiple autonomous vehicles that account for traffic control (e.g., traffic signals and stop signs). Our extensive evaluation shows that DoppelTest can efficiently discover 123 bug-revealing violations for a production-grade ADS (Baidu Apollo) which we then classify into 8 unique bug categories. 
    more » « less